
THIS REPORT HAS BEEN DELIMITED

AND CLEARED~ FOR PUBLIC RELEASE

uNDE D OD DIAlCiVe 5200,20 AND
NO RUSTRICTION8 ARE IMPOSD UPON

ITO U69 AND DISCLOOURK.

DISTRIBUTION STATESNT A

APPROVED FOR PUBLIC RILIACE;

DISTRIBUTION UNLIMITED,



UNCLASSIFIED

ARMED SERVICES TECHNICAL INFORMATION AGENI
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

UNCLASSIFIED



NOTICE: When government or other drawings, speci-
fications or other data are used for any purpose
other than in connection with a definitely related
government procurement oIerantlon, the U. S.
Government, thereby incurs no resornsibility, nor any
obligation whatsoever; and the fact that the Govern-
ment may have formilated, frnished, or in any way
supplied the said drmwings, specifications, or other
data is not to be egarded by implication or other-
wise as in any manner licensing the holder or any
other perban or corporation, or conveying any rights
or permission to manufacture, use or sell any
patented invention that may in any way t- related
thereto.



UNIVERSITY CALIFORNIA
DEPARTMENT OF E RICAL ENGINEERING

BERKELE LIFORNIA

ELECTRONICS RESEARCH LABORATORY

HU - CORRELATION PROCESSES IN ANTENNA ARRAYS

C-

by

I. W. Linder

XEROX J ir:
U CT 14 1960

Institute of Engineering Research TIPOR
Series No. 60, Issue No. 301 . ( ,,;,1

July 26, 1960
Nonr.222(74)



Electronics Research Laboratory
Department of Electrical Engineerizg

University of California
Berkeley, California

Series No. 60
Issue No. 301

CORRELJATION PROCESSES IN ANTENNA ARRAYS

by

1. W. Miader

Reproduction in whole or in part is permitted forany purpose of the United States Government.

Report No. II1
Office of Naval Research
Contract Nonr-222(74)

July Z6, 1960



TABLE OF CONTENTS

Page

I. Introduction ...... ..................... .1..

IL Simple adding operations in the combining network 2

III. Multiplicative operations in the combining network . 6

A. Monochromatic signals ...... ............. 6
B. Band-limited random signals, general case . . . 10
C. Band-limited random bignals, special case . . 17

IV. Effect of finite averaging time ... ............ .... 23

V. Resolution characteristics of correlation arrays . . . 31

VI. Summary ....... ..................... ... 37

Appendix I: Calculation of voltage response patterns
with two signal sources .... ............... ... 38

References .......... ..................... 45

LIST OF FIGURES

Figure Page

1. Normalized directivity pattern, four-element
correlation array .... ................. ... 16

2. Metan and variance of output voltage, three-element
correlation array ..... ................. .... 18

3. Directivity patterus, four-element correlation array 22

1. Variance of output voltage as 4 function of integration
time, T ........ .................... .... 27

5. Ninety-five per cent confidence interval as a function
of integration time ....... ............... 28

6. Voltage response pattern, four-element correlation
array ...... .................... ... 33

7. Voltage response pattern, four-element correlation
array and two coherent signal sources ....... ... 42

8. Voltage response pattern, four-element correlation
array and two coherent signal sources .......

9. Voltage response pattern, four-element correlation
array and two coherent d.zgnal sources ........ 44

- ii -



I. INTRODUCTION

The design of an antenna array whose performance can be

optimized in some specific sense when the array is utilized to receive

a signal buried in a general noisy medium can be accomplished through

noise theory considerations and correlation techniques. In this report,

the correlation coefficient of the noise voltage will be shown to relate

the noise power received to the element spacing in a linear antenna

array. Then, antenna arrays employing multiplicative and time

averaging circuitry which implements the definition of correlation

coefficient will be examined in some detail in order to determine their

voltage response patterns and their resolution characteristics.

For the purpose of this analysis assume that the noise sources

are spherically distributed and are b .1etically independent. The

voltage .?roduced on an isotropic antenna by the noise originating i.
element of solid angle dM can be represented by the usual Fourier

series:

Co

x(t) I [a,, cos(Zwfkt) + bk sin(lrfkt)]
k=O

where

lim T"Efa ma = 0, for m n
T->Co

lim T. E{bmbn) =0, for m n
T-> co

lim T. E(ambn 0
T-> co

lim T. E{a} lim T. E{b) 2 W(f).
'I-> 00 T->on

In this representation, the coefficients ak and bk are distributed
normally with means zero; E is the expectatinn operator, a nd W(f)

is the (two-sided) power spectral density induced on the antenna

element by the source.
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(II. SIMPLE ADDING OPERATIONS)

The noise voltage will be applied to the elements of a linear

antenna array. Each element will be connected to an individual

amplifier and phase shifter. The output of each antenna-amplifier-

#2 #M

AlA 2  AM

I CU)MBINING NETWORK

OU'JPUT

phaseshifter circuit iR connected to a combining network which will

operate on the individual element voltages to provide an optimum

output voltage from the total array. In this report, the effect of

additive and multiplicative operations in the combining network will

be considered.

1I. SIMPLE ADDING OPERATIONS IN THE COMBINING NETWORK

8
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(11. SIMPLE ADDING OPERATIONS)

Consider two elements, i and j, displaced vertically in the

spherical coordinate system as shown, with a distance d.. between

7them. Then the voltage produced in one element by a point noise

source located at %0, *0 would be displaced in time from that produced

in the other element by the factor (d ij/c) cos 0 .

In general (with ni(t) representing the noise voltage induced on

element i):

co

ni(t) = ak coS Z1T.fk(t + T.) + bk sin ZTrfk(t + -r

k=O

n(t) = ak cos Zifk(t + Tj) + bk sin 2rfklt + j)

k=O

where ri and T . represent time displacements relative to an arbi. ry

reference point.

If ni(t) is the voltage that would be produced in an isotropic

element, then the voltage in an actual element would be modified by

the gain in field intensity, g(e, *), of the element,

g(O, 4) = rGTF. ' where G(9, ,) is the power gain pattern of

the element.

The voltage at the output of the elemen.-amplifier circuit could

be further modified by the phase shifter. In this analysis it will be

assumed that the desired signal is located at a point such that the

signal voltage produced on all elements will be in phase, and the phase

shifting networks can then be %et on zero. Thus the voltage produced

by a noise source located at 00, 00 will appear at the output of the

antenna element-amplifier circuit as

Ni(t) = [ gi(60 0) • A, . ni(t) I

It is assumed that all amplifiers have the same bandwidth

characteristics with center frequency f 0 and with bandwidth B. Ihe

amplitude of the gain produced by each amplifier may vary from that

-3-



(I. SIMPLE ADDING OPERATIONS)

of the others; the amplitude of the gain of the i-th amplifier is indicated
by Ai .

By carrying out the standard analysis of the narrow band gaussian
I

process, it can be shown that the suri of M clement voltages can be

represented as

M

N . (t) = A(t) cos w0t t B(t) sin t C(t) Cos[ o t +

where Alt) and B(t) are distributed normally with

E{A} = E{B} 0

E{A(t) A(s,}= E{B(t) B(s)}

"2 MMf +f

BC L2%(f) g gAA COS ZIrf(T T r) cos 21r(f - f)(t - 9)df
f-o"Z n I m=.-

E{A(t) B(s)} E{B(t) A(s)) =

f + B M M

fO-0 7 n.=I m-1

The amplitude of the noise voltage at the output of the system, C(t),

is Rayleigh distributed with parameter a- E{A 1, the average noise

power (unit resistance) in the output circuit.

The noise vultage which has been calculated is that contributed

by a single point noise source. The total noise voltage at the output

of the antenna network is then the sum nf the contributions of all noise

sources (tnis is the integral over the sphere in the case of continuously

distributed noise.

'rhe average noise power can be expressed in terms of the

correlation coefficient, R n , of the noise. Assuming a continuous

4-



(II. SIMPLE ADDING OPERATIONS)

distribution of noise sources, this becomes

M M

N AiA R Or.
i- j--

where

o Z Zir -afo BRn(Tij I W(f, 0, b) cosl2irf Tj sin 0 dO #~ df
f 0" Z 00

The signal voltage is -asumed to be produced by a signal source
located on the main lobe a--is and is, therefore, in phase on r-Lil Of the
antenna elements. So the total signal voltage in the output circuit of
the antenna system is

M
S(t) = Asi(t)

i= 1

and the signal power is

MM
S 2  jJ A.AjRs(0)

1=1 j=l

where

fo+ B

RO(0) Y B 2Ws(f) ,

The average signal-to-noise power ratio in the output circuit is

MM 2.A. Rs(o)

i=lj =l

-5.-



(III. MULTIPLICATIVE OPE)ATIONS)

This equation was obtained through a different, though equi-
2

valent, line of reasoning in a previous report. Sinct. the signal-to-

noise power ratio is a function of the correlation coefficient of the

amplified noise voltage, it can be optimized by proper choice of

spacing between the antenna elements. For a given number of elements

in the array, the signal power is fixed, and the noise power is mini-

mized by proper selection of element spacing.

III. MULTIPLICATIVE OPERATIONS IN THE COMBINING NETWORK

The combining network can be employed to multiply together

the individual element voltages. For practical effectiveness this

requires time averaging at eome point in the network. This combination

of multiplication and time averaging then satisfies the definition of the

correlatiL i coefficient:

T

R(r) = liMr . n(t) n(t + ,) dt.

In considering practical networks that can be used to carry out

this correlation process, two general variables arise: (I) possible

combinations of the multiplication and averaging circuits, and (2)

restriction of time averaging to a finite time interval. The first of

thcse will be considered for single frequency signals and for general

random signals in this section. The second will be discussed in the

next section.

The voltage response at the output of the artenna array for an

arbitrary angular location, , of a single signal source will be defined

as the directivity pattern of the array.

A. MONOCHROMATIC SIGNALS

The antenna directivity patterns which result when individual

element voltages induced by a single monochromatic source (negligible

noise) are correlated have been investigated by several researchers. 3,4

6-



(11. MULTIPLICATIVE OPERATIONS)

In general, the procedure has been to recall the directivity patterns of

linear additive arrays and then to demonstrate prod&.:t arrays which

will give equivalent directivity patterns.

The directivity patterns for linear arrays with constant element

spacing, d, can be expressed by one of two series, depending on an

odd or an even number of elements in the array.

1. For an array of 2n+l elements, the sum pattern is given by

n
P Zn+ (I ) = I Ak cos Zku

k=O

where u = (rdA) sin . The array is assumed to be symmetrical with

respect to its center element, A0 , (Ai = Ai). PZn+j( ) is the ampli-

tude gain given by the array to an input signal E 0 sin (wt + q). The

center of the array is the phase reference.

2. A linear array of 2n elements and constant zpacing, d, has

a sum pattern

n

P n( I Bk cos(Zk - l)u

k=l

Again symmetry is assumed, so Bk is the common amplification of

the two elements which have distance (k - d from the array center.

Berman and Clay have described an array in which pairs of

signals are multiplied together and then time averaged. The output

voltage is formed by multiplying together all of the resulting time

averages. With this procedure, an array of n + I elements, with

successive elements spaced D, 2D, 4D, • • •, 2n ID from the first

element, has a directivity pattern equivalent to that of a 2n element

additive array (equation (2) above) with constant element spacing 2D.

In this case the product array is about one-fourth the length of the

equivalent linear array. Such a product array with four elements

coald be representfed as

-7 -



(III. MULTIPLICATIVE OPERATIONSI

X 

AVG.

4 T

V t oCT liM l COS Wt cos(Wt - dt

ii T-> T

4
V out c T COS WTlii

i=Z

With proper spacing of the elements, this pattern is the same as that

of an eight-element linear array.

A second possible product array carries out all desired

multiplications beiore finally time averaging the product. Analysis

of the directivity pattern in this case shows a smaller saving in over-

all length over the equivalent linear array than was the case in the

first product array discussed. Again a four-element example is

-8-



(III. MULTIPLICATIVE OPERATIONS)

20

30'

4

T 4

V oc lixn5 1 7T cos(wt - ri.) dt.out T- OD
.T i1l

With proper spacing of the elements, this pattern is the same as that

of a six-element linear array.

It is also possible to start with two elements and to process

the element voltages to get directional patterns which are equivalent

to those of odd or even element additive arrays.

-



(Ill. MULTIPLICATIVE OPERATIONS)

Voltage induced on element #1 sin(wt + 4)

Voltage induced on element #2 sin[ ct - (- sin,) + , ]

Output of multiplier Y = sin(wt+ 4') sin[,wt - (- ,in4)+4]

After avcraging y= -1 cos (-L- sin4)
1 d

And, if d= Zs, Y cos(-- sin) =-cosu

Brown and Rowlands have shown how to use this function to

synthesize a directivity pattern. Using the relation

Tn(cos u) = cos nu n = 0, 1, 2, S.'

where T (x) is the Chebyshev polynomial of the first kind, every term
n

in the cosipe series of the desired directivity pattern can be synthesized

by a suitable combination of power law devices operating on the outp.

of the two-element correlation pair. Arithmetically, two elements

can thus be made to give a directivity pattern equivalent to that of a

linear additive array of any arbitrary length. In practj'.e, noise

considerations, ignored in these pattern calculations, and the presence

of more than one signal source would limit the length of the equivalent

linear array which could be synthesized. These points will be con-

sidered in more detail in a later section.

B. BAND-LIMITED RANDOM SIGNALS, GENERAL CASE

As with the monochromatic signals, the basic unit in aie study

of correlation of band-limited random signals is the two-element array.

In this case the signal can be described only in statistical terms, and

statistical methods can be utilized to describe the performance of the

system. As before, noise will be neglected in initial considerations

and will enter in a later section. Correlation in such a two-element

array is directly analogous to the operation of correlation detectors,
5

which have been described in the literat,,re. Performance of

correlation detectors, however, is usually studied in terms not directly

applicable to the description of the characteristics of antenna arrays.

-10 -



(III. MULTIPLICATIVE OPERAT7I0NS)

The vot) e inueW)teatnaeemnsaesainr n

cohed otge ZindceB h a co.o nteval .e amiies are liti n ad

time-invariant networks with system fuinctions H-(w) =1H(w)I efli(w)t

and G(w) = I G(w) I e yw~, Fburier transf ormable into the impulse

responses h(t) and g(t).

For each set of the ensemble of signal functions, the Fourier

expansion is:

N

x i = ai csWt+

N

X2 (t) = b. cos(Owit + III.)



(11. MULTIPLICATIVE OPERATIONS)

where

I. ai, bi are Rayleigh distributed with ai = 2vyi(fi) 6f and

b i 2W 2 fi) Of, with W(fi) as the power density over a frequency

interval 6f centered at fi;

2. 01, 4i have uniform distributions over (0, -iT);

3., 0 is the lower edge of the band of width B cps, and

W i = W 0 + Ayri/T.

Then

N

y(t) = ai hi cos(Wit + 0i + ni)
i= i

N

y2 (t) bi gi cos(Wit + i + ¥i)

i=l

After multiplication

N N

Y(t) =y 1 (t) y2 (t) =j i+ '1 g) +Z

I c o s ( W Ai - Wo~t + + - n| i - j) "
7 j1I

The first cosine term describes a band of frequencies centered at

twice the mid-frequency of the band-limited signal, and the second

cosine term describes the dc and low frequency component of the

output voltage.

After averaging:

~t $ a-tgh coa qj + +iq - y) dw.

0

Now in this antenna case x2 (t) = x,(t) e So a" b1 and

411 X qi + Wiv. And if the amplifiers are assumed to have identical

- 12 -



(III. MULTIPLICATIVE OPERATIONS)

phase functions and constant amplitude functions, the output is

00

(G- H) S W(w) cos wr dw = (G' H) R(t)

0

or the correlation function. For this normally distributed signal with

a rectangular frequency function (center frequency f0 )

sin ff rcMt- (G' H) B !rB cos 27rf0T

The obvious advantage to specifying amplifiers with identical

phase functic:a aud constant amplitude functions is that this leads

directly to a statemeut of the output of the system !A terms of the

correlation function of the input bandimited signal. A signal which

is norn.ally distributed over the pass band of the amplifiers can b.

analyzed most simply through its characteri3tic function. As a

result of these two statementq, the performance of correlation arrays

with more elemento can be determined in a direct manner.

Before considering more elements, however, it is useful to

point out the self noise or fluctuation component of the output voltage

of the multiplier in the simple two-element correlator. For a

normally distributed signal source located in the principal lobe of the

two-elemtat array (T = 0), the output of the multiplier has a Chi-

square distribution whoa mean value is the desired array output

voltage, and whose ac component is rhx !,4lf noise which must be

minimized by time averaging. For an arbitrarily located source

it wac ahown previously that the mean value is proportional to R(."),

the correlation coefficient. The rariance is proportional to

[R(o) + R(1) 2, or

2 , f R(O)

This variance does not go to zero. Its value decreases by 1/2 as the

signal moves from tbt main lobe to a position where its mean value

-13 -



(III. MULTIPLICATIVE OPERATIONS)

is zero.

A an example of the calculations of directivity patterns of

correlation arrays with a greater number of elements, coa'sider a

four-element array.

2x

The desired output voltage is simply the expected value of the product

of the four element voltages.

Trt = vl(t)V 2(t) V3lt) VPl

And, since these are normally distributed band-limited voltages, this

becomes

Y (t) = (V1 (t) Vz~q1 V3 (tdt + 1 )V3() V2t ()+[ 4t][I t 3()

oc R(T1 2 ) R('r 3 4 ) + R(T 13 ) R('r ? 4 ) 4 R(r 1 4 ) R(T 2 3 )

With a rectangular frequency function, each correlation coefficient

has the form

sinirB-

R(r) = R(O) sin--"J cos Zwf Tlij rBT 0i ij

- 14 -



(III. MULTIPLICATIVE OPERATIONS)

And with relative element spacing chosen to make d 1 2 = D, d2 3  D,

and d3 4 = Z, the rrean output voltage can be put in a form resembling

the directivity pattern of a uniform linear array.

I (sin BX Bin ZBX sin 2BX sin 3BX cos l(2f0 X) +
17 - 'TBXZBX a=

I [sin BX sin 2BX+ sin BXsin4BX]'Z -B- ZB --MR cos 3(2fo0X) +

I[sin BX sin 4BX sin 2BX sin 3BXIcoo 5(f X)}"Z[ 4BX -- gx + -="B-X- - j os5f0)

where X = (rD/c) sin 4. For a very narrow bandwidth the .zoefficiLnts

of the cosine terms approach unity rnd the directivity pattern of this

correlation array (length 4D) is the same as that of a six-element

uniform linear array (length 10D). As the bandwidth increases, these

coefficients influence the amplitude of the sidelobe structure of th

directivity pattern. This is showz in Fig. I for one basic spacing,

D, and for two bandwidths.

The assumption of a random signal source with a normal

distribution permits a pattern analysis by the characteristic function

method. The characteristic function is

(ji xI + j zx + ..... .+ JYxK K K

F ( E) = E = exp I R(rs)9r9
x 1 77 r=Bl sS]

and the pattern will be given by the appropriate coefficient in the

expansion of this function. For example, consider a simple three-

element array.. The directivity pattern will be given by E(V V V

1 2 3 )

-15 -
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1.0. Spacing '-D-x*-D-x=2D x.. 1.0

D 3X 0 /8

0.5 
*0. 5

15 30 45 60 75 90
lin degrees

FIG. I. --Normalized directivity pattern, four -eler.ent
correlation array.
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(III. MULTIPLICATIVE OPERATIONS)

where E{x} is the expectation operator. This will be the coefficient

of [ (j)/I)/l ](jz) /2! ( 3 )i11 in the power series expansion of

E{VVv 3 IOc R(O)R( 1 3 )+ ZR(TIZ)R(Tz 3 )

If we assume a rectangular frequency function and relative element

spacings d 1 2 : D, d2 3 = 3D, the directivity pattern can be written

t [sinBXsin3BX o s+in 4BX sin BX sin 3BX]out'IL-- -- 3BX 0 z4BoX +  3M":

where X = (TrD/c) sin .

The variance of the output voltage is a measure of the unwantdC.

ac power which must be reduced by time averaging, so this quantity

must ..e known to complete the description of a correlation array

Just as in the calculation of the average output voltage, the variance

can be determined by the characteristic function method, in this case

by first finding E{(V V V3 ) }, This is the coefficient of

01 [ /2! ) • 3) ] in the same powur series expansion.

E{(V V z v 3 ) + 6 R0) Z R(T 13R( 0)4+ 12 R(O) 2 R(T )Z +

SIZ R(Q) 2 R(T +3 ) 2 +Z4R(i, )2 R(-T2 3
2 + 48 R(O)R(T I)R(T }F4 TP

The mean and the variance of this array voltage, each normalized to

unity at (2f1X) = 00, are shown in Fig. 2.

C. BAND-LIMITED RANDOM SIGNALS, SPECIAL CASES

In the previous case no frequency restriction was imposed on

the multiplication circuitry. It is apparent that as the number of

antenna elements increases this operation of multiplication 'will impose

frequency bandwidth requirements which may be difficult to meet. For

each stage of multiplication added to the array circuitry, frequency

requirements are doubled.

-17-
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(III. MULTJPLICATIVE OPERATTONS)

As shown in the equations for the two element Lroduct array,

the output voltage consists of a low frequency component and a

component centered at 2f0 ' If this low frequency component of each

product pair is selected by a low pass filter for use in subsequent

stages of multiplication, the over-all frequency bandwidth requirements

of the correlation circuits are kept within reasonable bounds.

In this case the directivity pattern cannot be obtained from the

characteristic function but must be calculated from the low frequency

term of the equation for the two-element product pa;r. By rejecting

the double frequency component some inc.ease in the width of the

directivity pattern must be expected. It is also noted that the low

frequency component is sensitive primarily to the spacing between

the two elements of each pair. The spacing between different product

pairs in the array influences the sidelobe level through the (sinniBx)/(nBx)

coefficients. For example, consider the two-product-pair corre, tion

array

- 244-d1 J2 - - 34  .

X

Lo Pass X Lo Pas

-AV



(IIL MULTIPLICATIVE OPERATIONS)

cc- sin Xl12L sin X34B sin X14B si. X-3B- X

fain X 1 sin X 34B sin X 13B sin X 2 B
. , t B B--- " x B - cXsBx1 2 -x 3 4 )2f'o

14l2  34 14 X23B csX)f

with Xi. = (7rdij/c) sin 4. Since spacing between the pairs has only a

secondary effect on the directivity patlern, this can be eliminated,

giving two product pairs from three elements. The directivity pattern

S2 3

is then given by (with relative spacing D and 3D):

V .{[sin XB sin 3XB I _ z (2f X) +

f sin XB sin 3XB sin 4XB
' I'n • -B + -4X j; -I cos 4( 2 1

0 X)f

As a comparison of the directivity patterns which result from

the general correlation -.rray utilizing all frequencies and from the

low frequency correlation array, considcr a four-element array under

both conditions:

20 -



(III. MULTIPLICATIVE OPERATIONS)

- f 
4

"Ix

Fbss: oFbssI

AVG

With relative spacings d I = 4D, d2 3 = D, d3 4 = 2D, the equations

for the two cases are

1. General case

V cc [ A cos 9(2f0 X)+ 4B coB 7(Zf 0 X) + C cos 5(2f0 X) +

ZD coo 3(2 0 X) + ZE cos (2f 0 X)]

2. Low frequency case

Voc[ F cos 7(2f 0 X)+ G cos 5(2f0 X) + H cos 3(Zf 0 X) +

I cos (2f0 X)]

In each case the coefficients A, B, are functions of(sinnXB)/(nXB)

whose values are approximately unity for narrow band situations and

become less than one only in wide-band circuits. Assuming a vaite

of unity for these coefficients, the directivity patterns for these two

cases are shown in Fig. 3.

- 21 -
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(IV. EFFECT OF FINITE
AVERAGING TIME)

IV. EFFECT OF FINITE AVERAGING TIME

The antenna directivity patterns in correlation arrays are exact

only in the limit of infinite averaging time. 1i actual correlators this

integration time would be a finite interval chosen as a compromise

between the desired response of the system and the maximum time delay

which can be tolerated. It becomes important, then, to investigate the

system performance as a function of this integration time.

An expression for the effect of an averaging device can be ob-
6

tained from general filter considerations. If h(t) is the effective

weighting function of a linear measuring device, and x(t) is the function

to be measured, a measurement Mx (T made at time t = T after x(t)

has been introduced at t = 0 can be expressed by the conviolution

T

Mx(T)= h(u) x(T-u) du h(u) = 0, u < 0

0

where (0, T) is the observation interval. Mx(T) will vary from obscr-

vation to observation, fluctuating about the expected value MT3Y ) with a

variance c- = M (T) -[Nr)].
In the general situation, x(t) is at least wide sense stationary,

and

T

X--) = h(u) TT-u-) du

0

TT

M (T)? =..h(u) x(T-u)x(T-v) h(v) du dv

0 0

TT

= . h(u) dx(u-v) h(v) du dv

00

where qpx is the correlation coefficient of the function to be measured.

For an ideal integrator h(u) = I/T, 0 <u < T. And

- Z3 -
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T

x TjTx
0

This result was obtained by Davenport 7 in an early study of

c,)rrelation detectors. Hoy'ever, his analysis was directed to a des-

cription of signal-to-.noise ratio in these detectors, while the present

investigation is concerned with placing confidence intervals around the

expected value of the output voltage, so the methods of utilizing Lhe

information in these equations will differ.

The information required for this statistical description of the

output voltage will be the expected value and the autocorrelation co-

efficient of the input voltage to the tim-,e averager. The calculations

will be discussed in some detail for the two-element array, and then the

effect of more clements in the correlation array will be indicated.

If we consider the usual two-element array, an arbitrarily located

signal source induces a band-limited random signal Vl(t) on element ,

and Vz(t) = Vl(t + T) on element #Z. Then, after multiplication

Y(t) = VI(t)V2 (t) = Vl(t)Vl(t+ T)

= RV(T)

v(S) = Y(t)Y(t+ S) = V(t)Vl(t+ T)Vl(t + s)Vl(t+ T + S)

= RV(T) + RV(s) + RV(T + s)R V(T - S)

The last term of this expression for the autocort elation coefficient

of the product voltage becomes rather awkward to handle in the equations

for the integrator circuit. And as more elements are added to the array,

the corresponding terms in their product equations increase the complexity

of the calculations. Since the interest here is in the change in integra-

tion time required as the number of elements in the correlation array

increases, an approximation for the correlation coefficient will be used

- 24 -
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which will permit straightforward calculation of the integration

characteristics.

If the signal source is located in the principal lobe (T- = 0), the

equations for the product voltage become

7M = V(0)

4vs) = R(O) j ZR(s)2

= R(0) Z( + Zp(s) )

where p(s) is the normalized autocorrelation coefficient; p(s)= R(s)/R(0).

Then for an arbitrarily located source, the approximate product voltage

equations are

Y = RV(T)

(S)= RV(?) (I 
+ Zp(s)

Z

This approximation is good for positions near the principal lobe axis

and fails for positions that make RV(T) quite small (Rv(T)-> 0).

For the usual rectangular band-limited voltage,

p(s) = (sin ir Bs/Tr Bs) cos 2irf0 s, and the equations for the ideal

integrator are

TRV(T)

TM (T)Z= R.V(T) 2 j(i s~)[ + 2si TBs 2 siir d)as2rZ()s
Y T0 ( Bs -N) 7-

0

The solution of thib integral can be expressed ;n two parts, the first

depending on the low frequency components o. the product voltage, the

second determined by the double frequency component.

M (T)? = R (T)I + m f + mf

- 25 -
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Or, in terms of the variance at the output of the integrating circuit,

2- 2 2 R 2 Z+M
0 If f

where

- [ l-cos ZvBT 2 11if Z + Si(ZBBT)T -_ 4 Cin(ZnBT)jm = (irBT) z  YBT Or BT)

Pj for BT >> 1.

M [Si(irBT) .Si(Zk .BT),+ (kl i sk+ Z.BT + -l)si(2k-Z) Br..+
m 2 [f | 1T BT "iT 2BT + BT +0 ZirBT ."

L

sinBTcos krBT Cin(2 TBT) C in(2kirBT. Cin'Zk+2)irBT

(wBT)' 2(ir BT) 2(-w'BT) + 4(7r BT) 4

Cin(2k-Z)nBT1

4(irBT)' I

where k = (4f 0 )/B, Si(x) is the sine integral, and Cin(x)=f(1-cosv/v) dv

The Rtandard deviation of the voltage at the output of the inte-

gration circuit as a fu. ction of the integration time, T, is shown in

Fig. 4, In the limit as T-> 0, the variance is 2 P_'('.)' = -yJT) Z, as

would be expected for the Chi-square distribution. For voltage samples

observed without integration, a 95 per cent confidence interval on the

output voltage extends from zero to 3, 84 7T1T?). As integration time

increases, the confidence interval becomes smaller, and observed

voltage samples would cluster more and more closely about the expected

value, 17 ) Figure 5 shows this narrowing of the 95 per cent

confidence interval as integration time increases.

It should be noted that the double frequency component of vari-

ance decays rapidly compared to the low frequency component. A

correlator whose integration time is long compared to I/f 0 may still

have an output voltage with an appreciable variation because of this

low frequency variance. If the input circuits of the integrator rejected
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this double frequency component of the product voltage, the output

voltage would fluctuate with only the low frequency component of vari-

ance. Regardless of this circuitry, however, the integration time that

will be necessary to reduce the fluctuation will be very long compared

to 1/fos and the double frequency component of variance can generally

be completely neglected.

Incidentally, this statistical description of the fluctuation of the

output voltage of a two-element correlation array is the same as the

statistical description of the signal power output of a linear additive

array. The only difference would occ,,r in the magnitude of the expected

value, M 7). Knowing the variance of the linear array power fluc-

tuation as a function of time, we can compare averaging time require-

ments of more complex corrlation arrays with that of the familiar

additive array.

T..e autocorrelation coeffic-ent of the product voltage. Y10. * %r

general correlation arrays will be calculated in the sakne manner as

for the two-elemnt array. The expected value of the product voltage

can be determined from the characteristic function as in the preceding

section. The autocorrelation coefficient of the product voltage for a

source located on the main lobe axis can also be deterrnined by the

characteristic function method. This will be mod.fied by inserting the

expected value of the arhitrarily located i:,ource, and the resulting form

will be used to approximate the actual autocorrelation coefficient.

The expected value of product voltage is given in the following

table for a few values of the number of elements, n.

2 R(,r1

4 R(v I Z) R ( T 3 4 ) + R(T 13)R(T Z4) + R(T 14)R(-r 3 )

6

6 R(rlm)R(v no)R(Tpq), m n i o i p j q
m,n,o,Bq=2
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The characteristic function for the product voltage is

F(gl 92. s) = E {exp [jgV(t)+jg2 V(t+ s)])

= exp ()R2g2 Rs 91

Then 4 n(s) is the coefficient of (jl)n In!.(j 2 )n /n! in the power series

expansion of F(g,, 12, s).

n [in(S )

2 )z (I + 4 pa) 2

4 7?t?) z [ 9 + 72 p(s) + 24 p(s) 4

6 Mt Y? 2 [ 225 + 4050 Pls) + 5400 p(s) 4 + 720 p(s) 6

Calculation c' the variance, for the usual rectangular band-limited

voltage, gives

for two elements (and for signal a 2 Y I

power in linear array) Y - ( BT

2 4~- 4. 68for four elements ' = 2 68

2 _ 15.52
for six elements Y(t) BT

in all cases, BT >> I

This last table shows the general relationship between variance

and number of elements in a correlation array. For any established

level of fluctuation in the output voltage, a six-element correlation

array will require an integration time 15. 5 times as long as is req:uired

for a linear array (or a two-element correlation array). In the pre-

vious section the directivity pattern of a correlation array was iound to

be similar to that of a much longer linear array. Thus the correlation

process in ante-inas is seen to be essentially one of trading space for

time.
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V. RESOLUTION CHARACTERISTICS OF CORRELATION ARRAYS

In deacribing the capability of a correlation array to resolve

two similar signal sources separated by an angular displacement 8,

the directivity patterns developed in Section III cannot be applied

directly. Since the correlation arrays depend on multiplicative opera-

tions, the presence of two sources causes cross-product terms to

appear. These terms then necessitate additional calcalations to

determine resolution capability. These calculations will be examined

for correlation arrays in the presence of single frequency sources and

randomly varying sources. The correlation arrays will be found to

have resolution capabilities equivalent to those of longer linear arrays,

if the sources to be resolved are independent; however, for coherent

sources resolution may be possible only for certain specific separa-

tions of the sources and not as a general rule.

First, let us examine a four-element correlation array as

developed in Section I1. Assume there are two monochromatic sources,

source A (VA = A cos wAt) and source B (VB = B cos wBt), separated by

an angular displacement 0° . The general expression for the voltage

response of the array as a function of position of the sources is quite

lengthy, and is developed in Appendix I. It is found to depend on the

coherence of the sources. The two cases that occur can be summarized:

1. For tMo coherent sources:

Vout OCA 4 (cos X+cos 3X+cos 5X)+B 4 (cos Y+cos 3Y+cos5Y)

+ A 3B f (cos (nX-mY)] + A B f[ coo (nX-mY)] + AB 3f[cosCa-mY)

2. For two sources of slightly different frequencies:

V outoc A 4 (cos X+ cos 3X+ cos 5X) + B4 (cos Y + cos 3Y +-os 5Y)

+ A3 Bf[cos(nX-mY),cos 6t] + AB 3 f [coo (nX-mY).cos 6t]

+ A B f[cos (nX-mY). cos 6t] + A B f[ cos (nX-mY,]
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where X = (coD/c) sin A and Y = (wD/c) sin B are the phase delay

factors for the two sources with element spacing D, and f[ cos(nX-znY)]

represents a number of cosine terms containing these phase delay

factors, while f[ cos (nX-mY). cos 6t] represents a number of these

cosine terms modified by the beat frequency component, 6t, between

source A and source B.

In both of these equations, the first two terms correspond to

the voltage response pattern of a linear antenna array in the presence

of two sources. The remaining terms arise from the nonlinearity of

the correlation array. In the case of two sources with identXcal fre-

quencies, the cross-product terms are constant with time and averaging

the cutput voltage will not alter the result. When the sources have

different frequencies, however, time averaging can be employed to

reduce the beat frequency (cos 6t) part of the cross-product terms;

but even in this case the resulting voltage response pattern will not be

precisely equivalent to that of the linear array, since some of the cross-

pi oduct terms will remain constant with time and will contribute to the

dc component of the output voltage.

The voltage response pattern of this four-element ccrrelation

array as the array is rotated past a pair of coherent signal sources

separated by an angular displacement of 200 is shown in Fig. 6. In

this case the cross-products result in an apparent indication of a single

source located midway between the actual pair of sources. This four-

element correlation array will resolve sources with an angular separation

of 140 and with an angular separation of 280, but a pair of sources whose

angular separation is in the range 00-13 ° or in the range 150-260 will

not be resolved by the array.

It should be noted that if the correlator contains only one stage

of multiplication, then the cross. product terms occ'urring from two

sources of different frequencies appear only as beat frequency components.

These terms describe a low frequency ac signal appearing with the

desired dc measurement voltage. In this case the cross-produ.t terms

can be minimized by time averaging the output voltage. However, if

more than one stage of multipheation occurs between the antenna element
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and the output of the array (as is the case in the example of the four-

element correlation array), the cross-product terms will occur as luw

frequency ac terms and also as dc terms. In this case the equivalence

between the correlation arrays and the linear arrays is not immediately

apparent but must be determined by calculation of resolution character-

istics for the particular type of signal encountered.

Assuming a basic spacing D = X /2, the four-element correlation

array of length 4D will resolve two sources of slightLy different fre-

quencies at approximately 19. 5 . This is equivalent to the resolution

of a uniform linear array with an aperture of 9D, about twice as long.

A slightly more complex example of a correlation array is one

discussed by Drane:
8

The element on the left represents a .niform linear array with aperture

Za, whi le that on the right is a simple interfernmeter with aperture 2b.

The directivity pattern of the uniform linear array is proportional

to (sin X1/X, where X = w(a/c) sin 4. The directivity pattern of the

interferometer is proportional to cos Y, whcrc Y = w(b/c) sint 4. If

a = h and there is no spacing betwen the right end of the linear array

and the left element of the interferometer, the directivity pattern of

the correlation array is

sin 4X
ou t 4X-
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which is the same as the directivity pattern of a uniform linear array

of twice the length of this correlation array.

However, if two coherent sources are present the output becomes

sin 4 XA sin 4 XB 'sin XA Cos X B C O°XAsinXB
V cc -- + Cos (X~ + X 5m+ X Bout A- A B 1- 4L -

The third term again occurs because of the nonlinearity of the correlator.

Calculation of the resolution capability of this array shows that it is

equivalent to a uniform linear array 1-1/2 times as long as the cor-

relation array.

These have been only two examples of the effect of cross-product

terms in a correlation array in the presence of monochronatic sources.

In each case that might be considered, the effect of these teims would

vary, depending on the types of signal voltagcs emitted by the sources

and by the n "xnber of successive multiplicative processes in the cor--

relator.

When two statisti:ally similar sources are inducing randomly

varying voltages on the ante.na elcments, "ihe resolution capabilities

of the correlation array must be expressed in terms of integration

times and confidence intervals. Consider again the four-element cor-

relation array and two independent sources {source A and source B).

Then the expected Value of the out-nut voltage can be calculated either

directly or by the characteristic function method and can be expr'essed

in terms of the correlation coefficients of the individual voltages. The

voltage induced on the i-th element is

Vi(t) = V (t + T.) + V (T + r-r )

i A i) B i

and

=rt TjTV 2 (tV 3(tV 4 (t =

{ [RA(TI ZIRA(T 3 4 ) + RA(T 13 )RA( z 4 ) + RA(T 14)RA(T z 3 ))

+[ RB{r 1 2 )RB(T-4)+ RB(T 3)RB(TZ 4 ).f RB( 1 4)RB( r 2 3 )I

+ [ RA(T I 9)RB(T 34 )+ (T RP13)RB(T 24)R+ RA(7 14)RB(T 2 3 )

4- R A(T34)R(, 1 + RA('24)RA(T 13 ) + RA(T23RB( f 14 ) }
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The first and second lines in this expression give the expected voltages

due to each source individually. The third and fourth lines contain the

cross-product components which occur as a result of the two stages of

multiplication of the element voltages.

The variance of this output voltage could be calculated directly;

however, the large number of terms in the final expression would make

this quite laborious. Therefore, this quantity will be approximated as

previously by considering the variance of the voltage produced by a

single source on the main lobe axis and then introducing the new value

of W) given by the equation above.

With an arbitrary angular displacement between the two sources,

and a given level of confidence desired in the result, it is possible to

calculate the maximum variance which will permit a significant differ-

ence in the anplitude of the output voltage when the array is directed

at a source anC when it is directed between the sour%-s. This value

of variance can then be used to determine the minimum permissible

integration time. So the array resolution is a function of two quantities:

level of confidence and integration time.

The resolution capabilities of the simple four-element correlation

array are listed in the following table. They are compared with those

of a linear array.

Random Signals

Resolution at the 95 Per Cent Confidence Level

Four- Element Correlation Array Aperture of Equivalent
Length 4D Uniform Linear Array

Resoiution Integration Time

190 BT = 18 9.6 D

180 BT = 97 9.4 D

17.50 BT = 8/O 9. 2 D

170 BT = wx
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VI. ,_lU)JA

Consideration of antenna arrays designed to receive randomly

varying signals buried in a noisy medium is facilitated by the use of

statistical correlation techniques. With the familiar linear additive

array, the correlation coefficients of signal and of spatially distributed

noise can be used to obtain the element spacing for optimum signal

reception. With nonlinear arrays the output voltage again is expressed

in terms of the correlation coefficients of the signal and noise voltages

induced on the elements.

The directivity patterns obtained for the nonlinear arrays were

shown to be equivalent to those of linear arrays of greater length. These

patterns, and an analysis of the averaging time required to perform the

correlation process, show that the correlation technique in antennas

is an exchange of length for time.

When more than one signal source is present, the correlation

array encounters difficulties from the cross-product terms occurring

in the multiplication processes. 'Witl, two roberent zoarces, resolution

may only be possible at specific separations, rather than over a general

range of separations. In this case, each array must be examined under

the actual signal source conditions to determine exact behavior. With

independent sources, the process of correlation reduces the cross-

product effect, and the principle -f length-time exchange is again valid.

This is the second report in this general study of correlation

techniques in antenna systems. Future work will be concerned with a

study of correlation arrays in the presence of distributed noise, and

with a determination of conditions of signals under which correlation

arrays are superior to linear arrays.
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APPENDIX I: CALCULATION OF VOLTAGE

RESPONSE PATTFRNS WITH TWO SIGNAL SOURCES

The antenna will be a four-element correlation array with rela-

tive spacings dI 2 = D, d23 = D, d3 4 = 2D, and D = k!2. The voltage

induced on the i-th element by signal source A is VA = A cos wA(t+TAi)
and that by signal source B is V B = B cos B(t+T Bi) where r i

= (di/c) sin.B. The signals which are interesting in this study of

correlation processes are grouped into two cases: (1) coherent signals

(wA = wB) and (2) signals with sligti y different frequencies (wB - WA= 6W).

Therefore, (wAdi/c)= (wBdiJc) and the following notation can be used:

andYD=D sin

X< = .--Dt- sln ObA  an Y =

Then the product of the four-eieme2t voltages can be written:

V = {[A Cos wAt + B COB wBt]!A cos ((At + X) + B co.wBt + Y).

[A cos(wAt + ZX) + B cos (wBt + 2 [A cos(w', + 4X" + B cos(ut + 1Y)}
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C~rrying out the indicated :u, .ip1icati ons, and rejecting the Multiple

fro.-qusncy components C ?,. anid -4:*), gives

V -9-LCos X + Cos 3x~ -Cos SX + g-[ Cos Y +cos' 3Y+ Cos 5Yj

+ c(,iX-6w,-t)+Cos( (Y+wY+e.,cos2X-Y-t)+cos(3X2'+6wt)

A4 
3

+ cuis(YL-4X+ ,wt)tCCSI2Y4 X- c.t)+COS(2Y-X+bWt) +cos(3Y+ZX-5&,)'

+ cos( 3T -2X4&g-cgY4i8t .4cos(SY- 2X±6wt) i coc(6'Y- -+&t)

+ A2 2 [cos(YX:ZY) + ,-)s(X-.Z-Y).-icoaiX -1Y)+cos(X-4Y^),cos(ZX+Y) +CO& ZX.-Y)

-t COS(ZX+3Y) +coi;,(2X--,Y)+c (.4,3X+ZY)4-cosk Xv-'Y)+cos(4X+Y)

+ cos(4X-Y) +cos(X-6Y-26wt)+coae X..5Y'--26tc s(3X-4Y-26c--,

+ cos(4X- 3Y-.26t)+cos(5X-2Y.-26&.i) +Los(6 X -Y-Z&6t) )

Although this is a form-idable excpiession, tl1,, capability of the

array to resolve the two sources car~ 5,z catimi-ated by examining t-'-a

simplified equatixons:

Case 1. .. when source A is located on th-e principal !obe of the array

(X =0),

Case 2 .. . when the principal lobe~ of the array is directed. between the

two sources (X r:Y).

If it is assumed that A - B and that 5(, - 0, then the eqtxalions for xThese

two cases are:

Case 1 4
V 6+ 12 cos Z 10 cos 2Z' + 8 cos 3Z I + & cori 4Z'

+ 4 cos 5Z I + 2 cos 6Z'

Case 2 4
V =T [12 cos Z" - 12 cos 3Z" + 12 coo 5Z" + 12 cas7'1
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where, with the angular displacement of the sources denoted by 0,

Z' = Tr sin 0, and Z" = r sin

Resolution of the two sources is certainly possible when the magniiude

of the voltage response with the main lobe directed between the sources

(case 2) is less that, the magnitude of the voltage response with the

niain lobe directed at one of the sources (case 1). Although this is
not the only condition under which resolution wiJl occur, a comparison

of these two voltage responses as functions of the separation oi the

sources should indicate the general action of the array in the oresence
of two sources. Resolution is certain for separations of approximately

1 0-
\ lI II I

t I I I

case 2 I I

0. 5 " 1 'cI I I"I I
\ , I

5 10 15 20 25 30 35 40 45
Angular separation of sources, 0,

in dearees

VOLTAGE RESPONSE OF ARvAY AS A FUNTCTION C'F
SEPARILATION OF SOURCES.
Dashed line: man lobe directed at one source.
Solid line: main lobe directed belween sources.

- 40



(APPENDIX I)

° 9 and 4 a the voltage rcponse for the main lobe
directed bek*se~n the euurces drops to zero. It is interesting to note

,hat the voltage respc.as , when the main lobe is directed at one of the
sources i. uniformly low, and the array will not indicate a maximum
voltage reeponse for this orientation. The general voltage response

patterns of this array for severil specific source separations are

shown in the accompanying diagrams, (Figs. 7, 8 and 9).
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FIG. 7. -Voltage response pattern, four-3eeent correlation array
and two coherent signal sources. Voltage normalized to unity for
maximum resporse of two coincident signal sources,
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FIG. 8.-Voltage response pattern, four-element correlation array
and two coherent signal sources. Voltage normalized to unity for
maximum responae of two coincident sgnal sources.
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.25

"0 Separation of nources)" =38*J

Source A Source B

o .10

.05

100 Mo 30 °  40°

FIG. 9.-Voltage response pattern, four-element correlation array
and two coherent signal sources. Voltage normalized to unity for
maximum response of two coincident signal sources.

A similar response pattern, resolving the two sources, can be
obtained with a linear antenna with aperture 3 , (6D). This i3
approximately the same length as the correlation array whose
patterns are plotted here.
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